Machine Learning Model Analysis and Data Visualization with Small Molecules Tested in a Mouse Model of Mycobacterium tuberculosis Infection (2014–2015)
نویسندگان
چکیده
The renewed urgency to develop new treatments for Mycobacterium tuberculosis (Mtb) infection has resulted in large-scale phenotypic screening and thousands of new active compounds in vitro. The next challenge is to identify candidates to pursue in a mouse in vivo efficacy model as a step to predicting clinical efficacy. We previously analyzed over 70 years of this mouse in vivo efficacy data, which we used to generate and validate machine learning models. Curation of 60 additional small molecules with in vivo data published in 2014 and 2015 was undertaken to further test these models. This represents a much larger test set than for the previous models. Several computational approaches have now been applied to analyze these molecules and compare their molecular properties beyond those attempted previously. Our previous machine learning models have been updated, and a novel aspect has been added in the form of mouse liver microsomal half-life (MLM t1/2) and in vitro-based Mtb models incorporating cytotoxicity data that were used to predict in vivo activity for comparison. Our best Mtb in vivo models possess fivefold ROC values > 0.7, sensitivity > 80%, and concordance > 60%, while the best specificity value is >40%. Use of an MLM t1/2 Bayesian model affords comparable results for scoring the 60 compounds tested. Combining MLM stability and in vitro Mtb models in a novel consensus workflow in the best cases has a positive predicted value (hit rate) > 77%. Our results indicate that Bayesian models constructed with literature in vivo Mtb data generated by different laboratories in various mouse models can have predictive value and may be used alongside MLM t1/2 and in vitro-based Mtb models to assist in selecting antitubercular compounds with desirable in vivo efficacy. We demonstrate for the first time that consensus models of any kind can be used to predict in vivo activity for Mtb. In addition, we describe a new clustering method for data visualization and apply this to the in vivo training and test data, ultimately making the method accessible in a mobile app.
منابع مشابه
Looking Back to the Future: Predicting in Vivo Efficacy of Small Molecules versus Mycobacterium tuberculosis
Selecting and translating in vitro leads for a disease into molecules with in vivo activity in an animal model of the disease is a challenge that takes considerable time and money. As an example, recent years have seen whole-cell phenotypic screens of millions of compounds yielding over 1500 inhibitors of Mycobacterium tuberculosis (Mtb). These must be prioritized for testing in the mouse in vi...
متن کاملA Novel QSAR Model for the Evaluation and Prediction of (E)-N’-Benzylideneisonicotinohydrazide Derivatives as the Potent Anti-mycobacterium Tuberculosis Antibodies Using Genetic Function Approach
Abstract A dataset of (E)-N’-benzylideneisonicotinohydrazide derivatives as a potent anti-mycobacterium tuberculosis has been investigated utilizing Quantitative Structure-Activity Relationship (QSAR) techniques. Genetic Function Algorithm (GFA) and Multiple Linear Regression Analysis (MLRA) were used to select the descriptors and to generate the correlation QSAR models that relate the Mi...
متن کاملPREDICTION OF SLOPE STABILITY STATE FOR CIRCULAR FAILURE: A HYBRID SUPPORT VECTOR MACHINE WITH HARMONY SEARCH ALGORITHM
The slope stability analysis is routinely performed by engineers to estimate the stability of river training works, road embankments, embankment dams, excavations and retaining walls. This paper presents a new approach to build a model for the prediction of slope stability state. The support vector machine (SVM) is a new machine learning method based on statistical learning theory, which can so...
متن کاملA novel peptide interferes with Mycobacterium tuberculosis virulence and survival
Tuberculosis (TB) is a huge global burden, with new and resistant strains emerging at an alarming rate, necessitating an urgent need for a new class of drug candidates. Here, we report that SL3, a novel 33-amino acid peptide, causes debilitating effects on mycobacterial morphology. Treatment with SL3 drastically inhibits the growth of Mycobacterium tuberculosis in vitro as well as in a pre-clin...
متن کاملIdentification of Mycobacterium tuberculosis CTL Epitopes Restricted by HLA-A*0201 in HHD Mice
CD8+ T cells are thought to play an important role in protective immunity to tuberculosis. The major histocompatibility complex class I subtype HLA-A*0201 is one of the most prevalent class I alleles, with a frequency of over 30% in most populations. HLA-A*0201 transgenic, H-2Db/mouse beta2-microglobulin double-knockout mice (HHD) which express human HLA-A*0201 but no mouse class I, was shown t...
متن کامل